[No authors listed]
In budding yeast, a single DNA double-strand break (DSB) triggers the activation of Mec1ATR-dependent DNA damage checkpoint. After about 12 h, cells turn off the checkpoint signaling and adapt despite the persistence of the DSB. We report that the adaptation involves the autophosphorylation of Mec1 at site S1964. A non-phosphorylatable mec1-S1964A mutant causes cells to arrest permanently in response to a single DSB without affecting the initial kinase activity of Mec1. Autophosphorylation of S1964 is dependent on Ddc1Rad9 and Dpb11TopBP1, and it correlates with the timing of adaptation. We also report that Mec1's binding partner, Ddc2ATRIP, is an inherently stable protein that is degraded specifically upon DNA damage. Ddc2 is regulated extensively through phosphorylation, which, in turn, regulates the localization of the Mec1-Ddc2 complex to DNA lesions. Taken together, these results suggest that checkpoint response is regulated through the autophosphorylation of Mec1 kinase and through the changes in Ddc2 abundance and phosphorylation. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |