例如:"lncRNA", "apoptosis", "WRKY"

Improved exercise capacity in cyclophilin-D knockout mice associated with enhanced oxygen utilization efficiency and augmented glucose uptake via AMPK-TBC1D1 signaling nexus.

FASEB J.2019 Oct;33(10):11443-11457. doi:10.1096/fj.201802238R. Epub 2019 Jul 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We previously reported in HEK 293T cells that silencing the mitochondrial peptidyl prolyl isomerase cyclophilin-D (Cyp-D) reduces Vo2. We now report that in vivo Cyp-D ablation using constitutive Cyp-D knockout (KO) mice also reduces Vo2 both at rest (∼15%) and during treadmill exercise (∼12%). Yet, despite Vo2 reduction, these Cyp-D KO mice ran longer (1071 ± 77 vs. 785 ± 79 m; P = 0.002), for longer time (43 ± 3 vs. 34 ± 3 min; P = 0.004), and at higher speed (34 ± 1 vs. 29 ± 1 m/s; P ≤ 0.001), resulting in increased work (87 ± 6 vs. 58 ± 6 J; P ≤ 0.001). There were parallel reductions in carbon dioxide production, but of lesser magnitude, yielding a 2.3% increase in the respiratory exchange ratio consistent with increased glucose utilization as respiratory substrate. In addition, primary skeletal muscle cells of Cyp-D KO mice subjected to electrical stimulation exhibited higher glucose uptake (4.4 ± 0.55 vs. 2.6 ± 0.04 pmol/mg/min; P ≤ 0.001) with enhanced AMPK activation (0.58 ± 0.06 vs. 0.38 ± 0.03 pAMPK/β-tubulin ratio; P ≤ 0.01) and TBC1 (Tre-2/USP6, BUB2, Cdc16) domain family, member 1 (TBC1D1) inactivation. Likewise, pharmacological activation of AMPK also increased glucose uptake (3.2 ± 0.3 vs. 2.3 ± 0.2 pmol/mg/min; P ≤ 0.001). Moreover, lactate and ATP levels were increased in these cells. Taken together, Cyp-D ablation triggered an adaptive response resulting in increased exercise capacity despite less oxygen utilization associated with increased glucose uptake and utilization involving AMPK-TBC1D1 signaling nexus.-Radhakrishnan, J., Baetiong, A., Kaufman, H., Huynh, M., Leschinsky, A., Fresquez, A., White, C., DiMario, J. X., Gazmuri, R. J. Improved exercise capacity in cyclophilin-D knockout mice associated with enhanced oxygen utilization efficiency and augmented glucose uptake via AMPK-TBC1D1 signaling nexus.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读