例如:"lncRNA", "apoptosis", "WRKY"

Wound-induced polyploidization is driven by Myc and supports tissue repair in the presence of DNA damage.

Development. 2019 Aug 02;146(15)
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Tissue repair usually requires either polyploid cell growth or cell division, but the molecular mechanism promoting polyploidy and limiting cell division remains poorly understood. Here, we find that injury to the adult Drosophila epithelium causes cells to enter the endocycle through the activation of Yorkie-dependent genes (Myc and E2f1). Myc is even sufficient to induce the endocycle in the uninjured post-mitotic epithelium. As result, epithelial cells enter S phase but mitosis is blocked by inhibition of mitotic gene expression. The mitotic cell cycle program can be activated by simultaneously expressing the Cdc25-like phosphatase String (stg), while genetically depleting APC/C E3 ligase fizzy-related (fzr). However, forcing cells to undergo mitosis is detrimental to wound repair as the adult fly epithelium accumulates DNA damage, and mitotic errors ensue when cells are forced to proliferate. In conclusion, we find that wound-induced polyploidization enables tissue repair when cell division is not a viable option.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读