例如:"lncRNA", "apoptosis", "WRKY"

Latexin expression correlated with mineralization of articular cartilage during progression of post-traumatic osteoarthritis in a rat model.

Histol Histopathol. 2020 Mar;35(3):269-278. Epub 2019 Jul 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


As latexin has been linked with chondrocyte hypertrophic differentiation it is possible that this protein may also be involved in the mineralization of cartilage in OA. Therefore, we correlated latexin expression with the mineralization marker, alkaline phosphatase and determined the mineral deposition in the articular cartilage by analyzing the Ca/P ratio and the collagen fibrils pattern, during the progression of post-traumatic OA in a rat model. OA was induced by medial meniscectomy and post-surgery exercise for 5, 10, 20 and 45 days. Protein expression in articular cartilage was evaluated by immunofluorescence, histochemistry and Western blot. Minerals and structure of collagen fibrils in the superficial zone of cartilage were analyzed by energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM) respectively. Protein expression analysis showed time-dependent up-regulation of latexin during OA progression. In the cartilage, latexin expression correlated with the expression and activity of alkaline phosphatase. EDX of the superficial zone of cartilage showed a Ca/P ratio closer to theoretical values for basic calcium phosphate minerals. The presence of minerals was also analyzed indirectly with AFM, as the collagen fibril pattern was less evident in the mineralized tissue. Latexin is expressed in articular cartilage from the early stages of post-traumatic OA; however, minerals were detected after latexin expression was up-regulated, indicating that its activity precedes and remains during the pathological mineralization of cartilage. Thus, our results contribute to the identification of molecules involved in the mineralization of articular chondrocytes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读