例如:"lncRNA", "apoptosis", "WRKY"

Inhibition of Plasmodium falciparum cysteine protease falcipain-2 by a human cross-class inhibitor serpinB3: A mechanistic insight.

Biochim Biophys Acta Proteins Proteom. 2019 Sep;1867(9):854-865. Epub 2019 Jun 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Falcipain-2(FP2), a cysteine protease from Plasmodium falciparum, cleaves host erythrocyte hemoglobin and specific membrane skeleton components during the parasite life cycle. Therefore its inhibition has been considered as an attractive approach to combat the disease. SerpinB3 (SPB3) belongs to the ovalbumin-serpin family and is a potent cross-class inhibitor of cysteine cathepsins L, K, S and papain. This study explored the possibility of inhibition of FP2 by SPB3. It turned out that general proteolytic activities as well as specific hemoglobinolytic activity of FP2 have been inhibited by SPB3. Furthermore, studies have been designed to investigate and characterize the mechanism of inhibition in comparison with proteases Cathepsin L (CTSL) and papain. The Ki value of inhibition for FP2, measured against its specific substrate (VLK-pNA), is 338.11 nM and stoichiometry (I/E ratio) of inhibition is 1. These values are comparable to CTSL and papain. Analytical gel filtration profile and CD spectroscopy data confirm FP2-SPB3 complex formation. Our studies revealed that interaction of SPB3 with FP2 is non-covalent type like that of CTSL and papain but unlike other serine protease-inhibiting serpins. An in-silico docking and simulation study have been performed with FP2 as well as CTSL and results suggest different binding mode for FP2 and CTSL, though both the complexes are stable with significant contribution from electrostatic energy of interaction. We further showed a disease state mutant SPB3-Gly351Ala performed better anti-protease activity against FP2. This study, for the first time, has shown a serpin family inhibitor from human could efficiently inhibit activity of FP2.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读