例如:"lncRNA", "apoptosis", "WRKY"

Immunization with merozoite surface protein 2 fused to a Plasmodium-specific carrier protein elicits strain-specific and strain-transcending, opsonizing antibody.

Sci Rep. 2019 Jun 21;9(1):9022
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Vaccine trials and cohort studies in Plasmodium falciparum endemic areas indicate that naturally-acquired and vaccine-induced antibodies to merozoite surface protein 2 (MSP2) are associated with resistance to malaria. These data indicate that PfMSP2 has significant potential as a component of a multi-antigen malaria vaccine. To overcome challenges encountered with subunit malaria vaccines, we established that the use of highly immunogenic rPfMSP8 as a carrier protein for leading vaccine candidates rPfMSP119 and rPfs25 facilitated antigen production, minimized antigenic competition and enhanced induction of functional antibodies. We applied this strategy to optimize a rPfMSP2 (3D7)-based subunit vaccine by producing unfused rPfMSP2 or chimeric rPfMSP2/8 in Escherichia coli. rPfMSP2 formed fibrils, which induced splenocyte proliferation in an antigen receptor-independent, TLR2-dependent manner. However, fusion to rPfMSP8 prevented rPfMSP2 amyloid-like fibril formation. Immunization of rabbits elicited high-titer anti-PfMSP2 antibodies that recognized rPfMSP2 of the 3D7 and FC27 alleles, as well as native PfMSP2. Competition assays revealed a difference in the specificity of antibodies induced by the two rPfMSP2-based vaccines, with evidence of epitope masking by rPfMSP2-associated fibrils. Rabbit anti-PfMSP2/8 was superior to rPfMSP2-elicited antibody at opsonizing P. falciparum merozoites for phagocytosis. These data establish rPfMSP8 as an effective carrier for a PfMSP2-based subunit malaria vaccine.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读