例如:"lncRNA", "apoptosis", "WRKY"

Critical role for PI3Kγ-dependent neutrophil reactive oxygen species in WKYMVm-induced microvascular hyperpermeability.

J. Leukoc. Biol.2019 Nov;106(5):1117-1127. doi:10.1002/JLB.3A0518-184RR. Epub 2019 Jun 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


PI3K has been indicated in regulating microvascular permeability changes during inflammation. However, its role in neutrophil-driven microvascular leakage in acute inflammation remains unclear. Using intravital microscopy in mice, we examined the role of PI3Kγ and PI3Kδ in formyl peptide WKYMVm- and chemokine CXCL2-induced permeability changes and assessed simultaneously neutrophil adhesion and emigration in post-capillary venules of murine cremaster muscle. We found a PI3Kγ-specific mechanism in WKYMVm-induced but not CXCL2-induced microvascular hyperpermeability. The increased microvascular permeability triggered by WKYMVm was not entirely due to neutrophil adhesion and emigration in cremasteric microvasculature in different PI3K transgenic mouse strains. The PI3Kγ-specific hyperpermeability was neutrophil-mediated as this was reduced after depletion of neutrophils in mouse circulation. Chimeric mice with PI3Kγ-deficient neutrophils but wild-type endothelium also showed reduced hyperpermeability. Furthermore, we found that the catalytic function of PI3Kγ was required for reactive oxygen species generation in neutrophils stimulated with WKYMVm. Pharmacological scavenging PI3Kγ-dependent in the tissue eliminated the discrepancy in hyperpermeability between different PI3K transgenic mice and alleviated WKYMVm-induced microvascular leakage in all mouse strains tested. In conclusion, our study uncovers the critical role for PI3Kγ-dependent duanyu1670 generation by neutrophils in formyl peptide-induced microvascular hyperpermeability during neutrophil recruitment.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读