BACKGROUND:Thymic stromal Lymphopoeitin (TSLP) is a key cytokine involved in inflammation and cancer progression. TSLP gene polymorphisms have been associated with increased susceptibility to cancer progression in different organs. We performed a control case study to examine the correlation of expression and polymorphisms of three nucleotides in TSLP with breast cancer (BC) risk in Saudi Arabian females. MATERIALS AND METHODS:The study was conducted on 116 healthy control subjects and 127 female patients with BC for the purpose of genotyping. Ten matching tissues provided data on immunohistochemistry to evaluate TSLP expression. Three SNPs (rs10043985, rs2289276, and rs3806933) were genotyped with TaqMan allelic discrimination assay. The patients' ages and estrogen receptor statuses were used to investigate the potential correlations between the different variations of TSLP genotypes and BC risk. RESULTS:BC tissues expressed positive immuno-staining for TSLP at a high rate compared to normal matching breast tissues. Malignant breast tumors exhibited higher TSLP expression than benign breast tumors. We also found that the rs3806933 (T) allele frequency decreased the risk of developing BC in the study population (OR = 0.356, p = 0.00027) significantly (0.356 times). Interestingly, statistical analysis revealed that the genotype mutant (AC) and the allele mutant (C) of rs10043985 within TSLP were significantly correlated with an increased BC risk (odds ratio [OR] = 4.762, confidence interval [CI] = 1.000-22.666, p = 0.03244; OR = 4.762, CI = 1.000-22.666, p = 0.03244; and OR = 4.575, CI = 0.975-21.464, p = 0.03516, respectively). In addition, the AC and AC + CC genotypes of TSLP rs10043985 were confirmed to be associated with an increased risk of BC risk in women aged above 48 years, compared with the AA genotype (AC and AC + CC vs. AA: OR = 9.468, CI = 0.493-181.768, p = 0.04537). CONCLUSION:The results reveal significant correlation between SNPs in TSLP and BC progression in Saudi Arabian female patients.
KEYWORDS: TSLP, breast cancer, gene expression, polymorphism