例如:"lncRNA", "apoptosis", "WRKY"

Activation of Cav1.2 and BKCa is involved in the downregulation of caffeine-induced contraction in mice mesenteric arteries.

Life Sci.2019 Aug 15;231:116555. Epub 2019 Jun 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIMS:Caffeine is a methylxanthine with multiple actions in vascular smooth muscle cells (VSMCs), including the increase in the intracellular Ca2+ (iCa2+) concentration by the activation of ryanodine receptors (RyRs). The present study aimed at investigating the participation of Ca2+-influx through different Ca2+-channels on the transient contraction (TC) induced by caffeine in mice mesenteric arteries. MAIN METHODS:Second-order of mesenteric arteries was isolated from male Swiss mice. Vessels without functional endothelium were stimulated with caffeine (10 mM). The caffeine-induced TC was evaluated after the incubation of artery rings for 30 min with the following drugs: nifedipine (10 μM), a Cav1.2 blocker; 2-aminoethoxydiphenyl borate (2-APB; 10 μM) and ruthenium red (RuR; 10 μM), transient receptor potential (TRPs) channels blockers; capsazepine (10 μM) and HC067047 (10 μM), TRPV1 and TRPV4 antagonists, respectively; paxilline (1 μM), a selective BKCa blocker; and SKF-96365 (30 μM), an Orai blocker. Ca2+-fluorescence measurements were also performed on the investigated arteries. KEY FINDINGS:The TC induced by caffeine was partially dependent on Ca2+-influx. However, the blockage of Cav1.2 increased the TC while reduced the iCa2+ signal. Similar results were observed after the blockage of TRPs or BKCa. Therefore, caffeine promoted Ca2+-influx via TRPs and Cav1.2, and hyperpolarization through the activation of BKCa, inducing negative feedback of TC. SIGNIFICANCE:Our results indicate an alternative mechanism for the control of VSMCs contraction in resistance arteries. The evidence of the negative feedback of contraction via TRP-Cav1.2-BKCa provides a new perspective for understanding the mechanism involved in the vascular responses triggered by caffeine.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读