例如:"lncRNA", "apoptosis", "WRKY"

Paeoniflorin protects against intestinal ischemia/reperfusion by activating LKB1/AMPK and promoting autophagy.

Pharmacol. Res.2019 Aug;146:104308. Epub 2019 Jun 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Intestinal ischemia-reperfusion (I/R) injury is a common pathological process with high clinical morbidity and mortality. Paeoniflorin, a monoterpene glucoside, is found to have diverse health beneficial effects including autophagy modulation, anti-inflammatory, anti-apoptotic, and anti-oxidative effects. Based on our pre-experiments, we proposed that paeoniflorin could ameliorate intestinal I/R injury and restore autophagy through activating LKB1/AMPK signal pathway. Our proposal was verified using rat intestinal I/R model in vivo and intestinal epithelial cell line (IEC-6 cells) hypoxia/reoxygenation (H/R) model in vitro. Our results showed that paeoniflorin pretreatment exerted protective effects in rat intestinal I/R injury by reducing intestinal morphological damage, inflammation, oxidative stress, and apoptosis. Paeoniflorin restored H/R-impaired autophagy flux by up-regulating autophagy-related protein p62/SQSTM1 degradation, LC3II and beclin-1 expression, and autophagosomes synthesis without significantly affecting control IEC-6 cells. Paeoniflorin pretreatment significantly activated LKB1/AMPK signaling pathway by reversing the decreased LKB1 and AMPK phosphorylation without affecting total LKB1 both in vivo and in vitro. LKB1 knockdown reduced AMPK phosphorylation, suppressed LC3II and Beclin-1 level, and decreased the degradation of SQSTM/p62, and the knockdown weakened the effects of paeoniflorin in restoring the impaired autophagy flux in H/R injured IEC-6 cells, suggesting that paeoniflorin mitigated the intestinal I/R-impaired autophagy flux by activating LKB1/AMPK signaling pathway. Our study may provide valuable information for further studies.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读