[No authors listed]
Recent reports show that protein kinase A but not exchange protein activated by cAMP (EPAC), acts in a cell autonomous manner to constitutively reduce the angiogenic sprouting capacity of murine and human endothelial cells. Specificity in the cellular actions of individual cAMP-effectors can be achieved when a cyclic nucleotide phosphodiesterase (PDE) enzyme acts locally to control the "pool" of cAMP that activates the cAMP-effector. Here, we examined whether PDEs coordinate the actions of during endothelial cell sprouting. Inhibiting each of the cAMP-hydrolyzing PDEs expressed in human endothelial cells revealed that phosphodiesterase 3 (PDE3) inhibition with cilostamide reduced angiogenic sprouting in vitro, while inhibitors of PDE2 and PDE4 family enzymes had no such effect. Identifying a critical role for PDE3B in the anti-angiogenic effects of cilostamide, silencing this PDE3 variant, but not PDE3A, markedly impaired sprouting. Importantly, using both in vitro and ex vivo models of angiogenesis, we show the hypo-sprouting phenotype induced by PDE3 inhibition or PDE3B silencing was reversed by duanyu1529 inhibition. Examination of the individual cellular events required for sprouting revealed that PDE3B and duanyu1529 each regulated angiogenic sprouting by controlling the invasive capacity of endothelial cells, more specifically, by regulating podosome rosette biogenesis and matrix degradation. In support of the idea that PDE3B acts to inhibit angiogenic sprouting by limiting reductions in active cdc42, the effects of PDE3B and/or duanyu1529 on angiogenic sprouting were negated in cells with reduced cdc42 expression or activity. Since PDE3B and duanyu1529 were co-localized in a perinuclear region in human ECs, could be co-immunoprecipitated from lysates of these cells, and silencing PDE3B activated the perinuclear pool of duanyu1529 in these cells, we conclude that PDE3B-mediated hydrolysis of cAMP acts to limit the anti-angiogenic potential of duanyu1529 in ECs.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |