例如:"lncRNA", "apoptosis", "WRKY"

The amino acid sensor general control nonderepressible 2 (GCN2) controls TH9 cells and allergic airway inflammation.

J Allergy Clin Immunol. 2019 Oct;144(4):1091-1105. Epub 2019 May 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:TH9 cells have emerged as important mediators of allergic airway inflammation. There is evidence that general control nonderepressible 2 (GCN2) affects the immune response under some stress conditions. However, whether GCN2 regulates CD4+ T-cell differentiation during allergic inflammation remains unknown. OBJECTIVE:We sought to clarify the regulatory roles of GCN2 in CD4+ T-cell subset differentiation and its significance in patients with allergic airway inflammation. METHODS:The effects of GCN2 in differentiation of TH cell subsets were detected by using the in vitro induction system. GCN2 knockout mice, ovalbumin-induced allergic airway inflammation, and adoptive transfer mouse models were used to determine the significance of GCN2 in TH9 differentiation and allergic airway inflammation in vivo. RNA sequencing, real-time PCR, Western blotting, and other molecular approaches were used to identify the molecular mechanisms relevant to regulation of GCN2 in TH9 cell differentiation. RESULTS:GCN2 deficiency significantly inhibited differentiation of TH9 cells but not TH1, TH2, and regulatory T cells. GCN2 knockout mice and recombination-activating gene 2 knockout (Rag2KO) mice that received adoptively transferred GCN2-deficient CD4+ T cells exhibited reduced TH9 differentiation and less severe allergic airway inflammation. Furthermore, the isolated GCN2-deficient TH9 cells also mediated less severe allergic airway inflammation on adoptive transfer. Mechanistically, GCN2 deficiency inhibits TH9 cell differentiation through a hypoxia-inducible factor 1α-dependent glycolytic pathway. CONCLUSION:Our results reveal a novel role of GCN2 in TH9 cell differentiation. Our findings indicate that new strategies to inhibit GCN2 activity might provide novel approaches to attenuate allergic airway inflammation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读