例如:"lncRNA", "apoptosis", "WRKY"

CaMKK2 Signaling in Metabolism and Skeletal Disease: a New Axis with Therapeutic Potential.

. 2019 Aug;17(4):169-177
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


PURPOSE OF REVIEW:Age and metabolic disorders result in the accumulation of advanced glycation endproducts (AGEs), oxidative stress, and inflammation, which cumulatively cause a decline in skeletal health. Bone becomes increasingly vulnerable to fractures and its regenerative capacity diminishes under such conditions. With a rapidly aging population in the USA and the global increase in diabetes, efficacious, multi-dimensional therapies that can treat or prevent skeletal diseases associated with metabolic dysfunction and inflammatory disorders are acutely needed. RECENT FINDINGS:Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a key regulator of nutrient intake, glucose metabolism, insulin production, and adipogenesis. Recent studies suggest a pivotal role for CaMKK2 in bone metabolism, fracture healing, and inflammation. Aside from rekindling previous concepts of CaMKK2 as a potent regulator of whole-body energy homeostasis, this review emphasizes CaMKK2 as a potential therapeutic target to treat skeletal diseases that underlie metabolic conditions and inflammation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读