例如:"lncRNA", "apoptosis", "WRKY"

The human Bcl-2 family member Bcl-rambo and voltage-dependent anion channels manifest a genetic interaction in Drosophila and cooperatively promote the activation of effector caspases in human cultured cells.

Exp. Cell Res.2019 Aug 15;381(2):223-234. Epub 2019 May 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We previously reported that the Bcl-2 family member human Bcl-rambo, also known as BCL2L13, induces apoptosis in human embryonic kidney 293T cells. Mouse Bcl-rambo has recently been reported to mediate mitochondrial fragmentation and mitophagy. In the present study, we showed that the transfection of human Bcl-rambo and its microtubule-associated protein light chain 3-interacting region motif mutant (W276A/I279A) caused mitochondrial fragmentation and the perinuclear accumulation of fragmented mitochondria in human lung adenocarcinoma A549 cells. In comprehensive screening using the Drosophila model in which human Bcl-rambo was ectopically expressed in eye imaginal discs, voltage-dependent anion channels (VDAC), also known as mitochondrial porin, were found to manifest a genetic interaction with human Bcl-rambo. In addition to human adenine nucleotide translocase (ANT) 1 and ANT2, the human Bcl-rambo protein bound to human VDAC1, albeit to a lesser extent than ANT2. Moreover, human VDAC1 and human VDAC2 in particular promoted the activation of effector caspases only when they were co-expressed with human Bcl-rambo in 293T cells. Bcl-rambo induced the perinuclear accumulation of fragmented mitochondria by the knockdown of VDAC1, VDAC2, and VDAC3 in A549 cells. Thus, the present study revealed that human Bcl-rambo and VDAC cooperatively promote the activation of effector caspases in human cultured cells.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读