例如:"lncRNA", "apoptosis", "WRKY"

c-FLIP and CD95 signaling are essential for survival of renal cell carcinoma.

Cell Death Dis. 2019 May 16;10(6):384
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Clear cell renal cell carcinoma (ccRCC) is the most-prominent tumor type of kidney cancers. Resistance of renal cell carcinoma (RCC) against tumor therapy is often owing to apoptosis resistance, e.g., by overexpression of anti-apoptotic proteins. However, little is known about the role of the apoptosis inhibitor c-FLIP and its potential impact on death receptor-induced apoptosis in ccRCC cells. In this study, we demonstrate that c-FLIP is crucial for resistance against CD95L-induced apoptosis in four ccRCC cell lines. Strikingly, downregulation of c-FLIP expression by short hairpin RNA (shRNA)interference led to spontaneous caspase activation and apoptotic cell death. Of note, knockdown of all c-FLIP splice variants was required to induce apoptosis. Stimulation of ccRCC cells with CD95L induced NF-κB and MAP kinase survival pathways as revealed by phosphorylation of RelA/p65 and Erk1/2. Interestingly, CD95L surface expression was high in all cell lines analyzed, and CD95 but not TNF-R1 clustered at cell contact sites. Downstream of CD95, inhibition of the NF-κB pathway led to spontaneous cell death. Surprisingly, knockdown experiments revealed that c-FLIP inhibits NF-κB activation in the context of CD95 signaling. Thus, c-FLIP inhibits apoptosis and dampens NF-κB downstream of CD95 but allows NF-κB activation to a level sufficient for ccRCC cell survival. In summary, we demonstrate a complex CD95-FLIP-NF-κB-signaling circuit, in which CD95-CD95L interactions mediate a paracrine survival signal in ccRCC cells with c-FLIP and NF-κB both being required for inhibiting cell death and ensuring survival. Our findings might lead to novel therapeutic approaches of RCC by circumventing apoptosis resistance.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读