例如:"lncRNA", "apoptosis", "WRKY"

Structural characterization of the redefined DNA-binding domain of human XPA.

Biochem. Biophys. Res. Commun.2019 Jun 30;514(3):985-990. Epub 2019 May 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


XPA (xeroderma pigmentosum complementation group A), a key scaffold protein in nucleotide excision repair (NER) pathway, is important in DNA damage verification and repair proteins recruitment. Earlier studies had mapped the minimal DNA-binding domain (MBD) of XPA to a region corresponding to residues 98-219. However, recent studies indicated that the region involving residues 98-239 is the redefined DNA-binding domain (DBD), which binds to DNA substrates with a much higher binding affinity than MBD and possesses a nearly identical binding affinity to the full-length XPA protein. However, the structure of the redefined DBD domain of XPA (XPA-DBD) remains to be investigated. Here, we present the crystal structure of XPA-DBD at 2.06 Å resolution. Structure of the C-terminal region of XPA has been extended by 21 residues (Arg211-Arg231) as compared with previously reported MBD structures. The structure reveals that the C-terminal extension (Arg211-Arg231) is folded as an α-helix with multiple basic residues. The positively charged surface formed in the last C-terminal helix suggests its critical role in DNA binding. Further structural analysis demonstrates that the last C-terminal region (Asp217-Thr239) of XPA-DBD might undergo a conformational change to directly bind to the DNA substrates. This study provides a structural basis for understanding the possible mechanism of enhanced DNA-binding affinity of XPA-DBD.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读