例如:"lncRNA", "apoptosis", "WRKY"

Inhibition of β-catenin/B cell lymphoma 9 protein-protein interaction using α-helix-mimicking sulfono-γ-AApeptide inhibitors.

Proc Natl Acad Sci U S A. 2019 May 28;116(22):10757-10762. Epub 2019 May 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The rational design of α-helix-mimicking peptidomimetics provides a streamlined approach to discover potent inhibitors for protein-protein interactions (PPIs). However, designing cell-penetrating long peptidomimetic scaffolds equipped with various functional groups necessary for interacting with large protein-binding interfaces remains challenging. This is particularly true for targeting β-catenin/BCL9 PPIs. Here we designed a series of unprecedented helical sulfono-γ-AApeptides that mimic the binding mode of the α-helical HD2 domain of Lymphoma 9 (BCL9). Our studies show that sulfono-γ-AApeptides can structurally and functionally mimic the α-helical domain of BCL9 and selectively disrupt β-catenin/BCL9 PPIs with even higher potency. More intriguingly, these sulfono-γ-AApeptides can enter cancer cells, bind with β-catenin and disrupt β-catenin/BCL9 PPIs, and exhibit excellent cellular activity, which is much more potent than the BCL9 peptide. Furthermore, our enzymatic stability studies demonstrate the remarkable stability of the helical sulfono-γ-AApeptides, with no degradation in the presence of pronase for 24 h, augmenting their biological potential. This work represents not only an example of helical sulfono-γ-AApeptides that mimic α-helix and disrupt protein-protein interactions, but also an excellent example of potent, selective, and cell-permeable unnatural foldameric peptidomimetics that disrupt the β-catenin/BCL9 PPI. The design of helical sulfono-γ-AApeptides may lead to a new strategy to modulate a myriad of protein-protein interactions.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读