例如:"lncRNA", "apoptosis", "WRKY"

Ammonium and nitrate regulate NH4+ uptake activity of Arabidopsis ammonium transporter AtAMT1;3 via phosphorylation at multiple C-terminal sites.

J Exp Bot. 2019 Sep 24;70(18):4919-4930
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In plants, nutrient transporters require tight regulation to ensure optimal uptake in complex environments. The activities of many nutrient transporters are post-translationally regulated by reversible phosphorylation, allowing rapid adaptation to variable environmental conditions. Here, we show that the Arabidopsis root epidermis-expressed ammonium transporter AtAMT1;3 was dynamically (de-)phosphorylated at multiple sites in the cytosolic C-terminal region (CTR) responding to ammonium and nitrate signals. Under ammonium resupply rapid phosphorylation of a Thr residue (T464) in the conserved part of the CTR (CTRC) effectively inhibited AtAMT1;3-dependent NH4+ uptake. Moreover, phosphorylation of Thr (T494), one of three phosphorylation sites in the non-conserved part of the CTR (CRTNC), moderately decreased the NH4+ transport activity of AtAMT1;3, as deduced from functional analysis of phospho-mimic mutants in yeast, oocytes, and transgenic Arabidopsis. Double phospho-mutants indicated a role of T494 in fine-tuning the NH4+ transport activity when T464 was non-phosphorylated. Transient dephosphorylation of T494 with nitrate resupply closely paralleled a transient increase in ammonium uptake. These results suggest that T464 phosphorylation at the CTRC acts as a prime switch to prevent excess ammonium influx, while T494 phosphorylation at the CTRNC fine tunes ammonium uptake in response to nitrate. This provides a sophisticated regulatory mechanism for plant ammonium transporters to achieve optimal ammonium uptake in response to various nitrogen forms.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读