例如:"lncRNA", "apoptosis", "WRKY"

Preventing abnormal NF-κB activation and autoimmunity by Otub1-mediated p100 stabilization.

Cell Res. 2019 Jun;29(6):474-485. Epub 2019 May 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


NF-κB, a family of transcription factors regulating diverse biological processes including immune responses, is activated by canonical and noncanonical pathways based on degradation of IκBα and processing of the IκB-like protein p100, respectively. Although p100 responds to noncanonical NF-κB stimuli for processing, it does not undergo degradation, but rather becomes accumulated, along with canonical NF-κB activation. We show here that the stability of p100 is tightly controlled by a deubiquitinase, Otub1. Otub1 deficiency not only promotes signal-induced p100 processing and noncanonical NF-κB activation but also causes steady-state p100 degradation, leading to aberrant NF-κB activation in the canonical pathway. B-cell-conditional deletion of Otub1 results in B-cell hyperplasia, antibody hyper-production, and lupus-like autoimmunity. Otub1-deficient B cells display aberrantly activated phenotypes and overproduce the cytokine IL-6, contributing to autoimmunity induction. Thus, maintenance of p100 stability by Otub1 serves as an unusual mechanism of NF-κB regulation that prevents autoimmunity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读