例如:"lncRNA", "apoptosis", "WRKY"

Active Tonic mTORC1 Signals Shape Baseline Translation in Naive T Cells.

Cell Rep. 2019 May 07;27(6):1858-1874.e6
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Naive CD4+ T cells are an example of dynamic cell homeostasis: T cells need to avoid autoreactivity while constantly seeing self-peptides, yet they must be primed to react to foreign antigens during infection. The instructive signals that balance this primed yet quiescent state are unknown. Interactions with self-peptides result in membrane-proximal, tonic signals in resting T cells. Here we reveal selective and robust tonic mTORC1 signals in CD4+ T cells that influence T cell fate decisions. We find that the Ras exchange factor Rasgrp1 is necessary to generate tonic mTORC1 signals. Genome-wide ribosome profiling of resting, primary CD4+ T cells uncovers a baseline translational landscape rich in mTOR targets linked to mitochondria, oxidative phosphorylation, and splicing. Aberrantly increased tonic mTORC1 signals from a Rasgrp1Anaef allele result in immunopathology with spontaneous appearance of T peripheral helper cells, follicular helper T cells, and anti-nuclear antibodies that are preceded by subtle alterations in the translational landscape. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读