例如:"lncRNA", "apoptosis", "WRKY"

CircPRKCI-miR-545/589-E2F7 axis dysregulation mediates hydrogen peroxide-induced neuronal cell injury.

Biochem. Biophys. Res. Commun.2019 Jun 25;514(2):428-435. Epub 2019 Apr 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Excessive oxidative stress induces significant injury and cytotoxicity to neuronal cells. The current study tested expression and the potential function of the circular RNA PRKCI (circPRKCI) in oxidative stress-injured neuronal cells. In cultured SH-SY5Y neuronal cells, hydrogen peroxide (H2O2) downregulated circPRKCI expression, causing accumulation of miR-545 and miR-589, but reduction of their target, the transcription factor E2F7. Importantly, ectopic overexpression of circPRKCI in SH-SY5Y cells significantly attenuated H2O2-induced cytotoxicity. Conversely, siRNA-mediated knockdown of circPRKCI induced SH-SY5Y cell death and apoptosis. Further studies demonstrated that H2O2-induced cytotoxicity in SH-SY5Y cells was inhibited by miR-545/589 inhibitors, but mimicked by miR-545/589 mimics. Importantly, CRISPR/Cas9-mediated knockout (KO) of E2F7 induced potent SH-SY5Y cell death and apoptosis. Furthermore, transfection of circPRKCI siRNA or miR-545/589 mimics were ineffective in E2F7 KO cells. In the primary human neurons, H2O2 stimulation similarly induced circPRKCI downregulation, miR-545/589 accumulation and E2F7 reduction. Moreover, H2O2-induced death and apoptosis in the primary neurons were significantly inhibited by circPRKCI overexpression or miR-545/589 inhibitors. Taken together, our results show that dysregulation of circPRKCI-miR-545/589-E2F7 axis mediated H2O2-induced neuronal cell injury. Targeting this novel cascade could be a fine strategy to protect neurons from oxidative stress.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读