例如:"lncRNA", "apoptosis", "WRKY"

Strategies for genetic inactivation of long noncoding RNAs in zebrafish.

RNA. 2019 Aug;25(8):897-904. Epub 2019 May 01
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The number of annotated long noncoding RNAs (lncRNAs) continues to grow; however, their functional characterization in model organisms has been hampered by the lack of reliable genetic inactivation strategies. While partial or full deletions of lncRNA loci disrupt lncRNA expression, they do not permit the formal association of a phenotype with the encoded transcript. Here, we examined several alternative strategies for generating lncRNA null alleles in zebrafish and found that they often resulted in unpredicted changes to lncRNA expression. Removal of the transcription start sites (TSSs) of lncRNA genes resulted in hypomorphic mutants, due to the usage of either constitutive or tissue-specific alternative TSSs. Deletions of short, highly conserved lncRNA regions can also lead to overexpression of truncated transcripts. In contrast, knock-in of a polyadenylation signal enabled complete inactivation of malat1, the most abundant vertebrate lncRNA. In summary, lncRNA null alleles require extensive in vivo validation, and we propose insertion of transcription termination sequences as the most reliable approach to generate lncRNA-deficient zebrafish.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读