例如:"lncRNA", "apoptosis", "WRKY"

Increased levels of superoxide dismutase suppress meiotic segregation errors in aging oocytes.

Chromosoma. 2019 Sep;128(3):215-222. Epub 2019 Apr 29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The risk of meiotic segregation errors increases dramatically during a woman's thirties, a phenomenon known as the maternal age effect. In addition, several lines of evidence indicate that meiotic cohesion deteriorates as oocytes age. One mechanism that may contribute to age-induced loss of cohesion is oxidative damage. In support of this model, we recently reported (Perkins et al. in Proc Natl Acad Sci U S A 113(44):E6823-E6830, 2016) that the knockdown of the reactive oxygen species enzyme, superoxide dismutase (SOD), during meiotic prophase causes premature loss of arm cohesion and segregation errors in Drosophila oocytes. If age-dependent oxidative damage causes meiotic segregation errors, then the expression of extra SOD1 (cytosolic/nuclear) or SOD2 (mitochondrial) in oocytes may attenuate this effect. To test this hypothesis, we generated flies that contain a UAS-controlled EMPTY, SOD1, or SOD2 cassette and induced expression using a Gal4 driver that turns on during meiotic prophase. We then compared the fidelity of chromosome segregation in aged and non-aged Drosophila oocytes for all three genotypes. As expected, p{EMPTY} oocytes subjected to aging exhibited a significant increase in nondisjunction (NDJ) compared with non-aged oocytes. In contrast, the magnitude of age-dependent NDJ was significantly reduced when expression of extra SOD1 or SOD2 was induced during prophase. Our findings support the hypothesis that a major factor underlying the maternal age effect in humans is age-induced oxidative damage that results in premature loss of meiotic cohesion. Moreover, our work raises the exciting possibility that antioxidant supplementation may provide a preventative strategy to reduce the risk of meiotic segregation errors in older women.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读