例如:"lncRNA", "apoptosis", "WRKY"

Tropomyosin-receptor kinase fused gene (TFG) regulates lipid production in human sebocytes.

Sci Rep. 2019 Apr 29;9(1):6587
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The endoplasmic reticulum (ER) is an organelle in which important cellular events such as protein synthesis and lipid production occur. Although many lipid molecules are produced in the ER, the effect of ER-organizing proteins on lipid synthesis in sebocytes has not been completely elucidated. Tropomyosin-receptor kinase fused gene (TFG) is located in ER exit sites and participates in COPII-coated vesicle formation along with many scaffold proteins, such as Sec. 13 and Sec. 16. In this study, we investigated the putative role of TFG in lipid production in sebocytes using an immortalized human sebocyte line. During IGF-1-induced lipogenesis, the level of the TFG protein was increased in a time- and dose-dependent manner. When TFG was over-expressed using recombinant adenovirus, lipid production in sebocytes was increased along with an up-regulation of the expression of lipogenic regulators, such as PPAR-γ, SREBP-1 and SCD. Conversely, down-regulation of TFG using a microRNA (miR) decreased lipid production and the expression of lipogenic regulators. Based on these data, TFG is a novel regulator of lipid synthesis in sebocytes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读