[No authors listed]
BACKGROUND:Head and neck squamous-cell carcinoma (HNSCC) ranks sixth among cancers worldwide. Though several molecular mechanisms of tumor initiation and progression of HNSCC are known, others remain unclear. Significance of (Mitogen-activated protein kinase-activated protein kinase-2) pathway in cell stress and inflammation is well established and its role in tumor development is being widely studied. METHODS:We have elucidated the role of (MK2) in HNSCC pathogenesis using clinical tissue samples, MK2-knockdown (MK2KD) cells and heterotropic xenograft mice model. RESULTS:In patient-derived tissue samples, we observed that MK2 is reproducibly overexpressed. Increased stability of cyclin-dependent kinase inhibitor 1B (p27), mitogen-activated protein kinase phosphatase-1 (MKP-1) transcripts and decreased half-life of tumor necrosis factor-alpha (TNF-α) and vascular endothelial growth factor (VEGF) transcripts in MK2KD cells suggests that MK2 regulates their transcript stability. In vivo xenograft experiments established that knockdown of MK2 attenuates course of tumor progression in immunocompromised mice. CONCLUSION:Altogether, MK2 is responsible for regulating the transcript stability and is functionally important to modulate HNSCC pathogenesis.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |