例如:"lncRNA", "apoptosis", "WRKY"

Chronic Unexpected Mild Stress Destroys Synaptic Plasticity of Neurons through a Glutamate Transporter, GLT-1, of Astrocytes in the Ischemic Stroke Rat.

Neural Plast.2019 Mar 25;2019:1615925. doi:10.1155/2019/1615925. eCollection 2019
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Background and Objective:Chronic unexpected mild stress (CUMS) destroys synaptic plasticity of hippocampal regenerated neurons that may be involved in the occurrence of poststroke depression. Astrocytes uptake glutamate at the synapse and provide metabolic support for neighboring neurons. Currently, we aim to investigate whether CUMS inhibits synaptic formation of regenerated neurons through a glutamate transporter, GLT-1, of astrocytes in the ischemic stroke rats. Method:We exposed the ischemic stroke rats to ceftriaxone, during the CUMS intervention period to determine the effects of GLT-1 on glutamate circulation by immunofluorescence and mass spectrometry and its influences to synaptic plasticity by western blot and transmission electron microscopy. Result:CUMS evidently reduced the level of astroglial GLT-1 in the hippocampus of the ischemic rats (p < 0.05), resulting in smaller amount of glutamate being transported into astrocytes surrounding synapses (p < 0.05), and then expression of synaptophysin was suppressed (p < 0.05) in hippocampal dentate gyrus. The ultrastructures of synapses in dentate gyrus were adversely influenced including decreased proportion of smile synapses, shortened thickness of postsynaptic density, reduced number of vesicles, and widened average distance of the synaptic cleft (all p < 0.05). Moreover, ceftriaxone can promote glutamate circulation and synaptic plasticity (all p < 0.05) by raising astroglial GLT-1 (p < 0.05) and then improve depressive behaviors of the CUMS-induced model rats (p < 0.05). Conclusion:Our study shows that CUMS destroys synaptic plasticity of regenerated neurons in the hippocampus through a glutamate transporter, GLT-1, of astrocytes in the ischemic stroke rats. This may indicate one potential pathogenesis of poststroke depression.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读