例如:"lncRNA", "apoptosis", "WRKY"

A novel synbiotic delays Alzheimer's disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster.

PLoS ONE. 2019 Apr 22;14(4):e0214985. eCollection 2019
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The gut-brain-axis (GBA) describing the bidirectional communication between the gut microbiota and brain was recently implicated in Alzheimer's disease (AD). The current study describes a novel synbiotic containing three metabolically active probiotics and a novel polyphenol-rich prebiotic which has beneficial impacts on the onset and progression of AD. In a transgenic humanized Drosophila melanogaster model of AD, the synbiotic increased survivability and motility and rescued amyloid beta deposition and acetylcholinesterase activity. Such drastic effects were due to the synbiotic's combinatorial action on GBA signaling pathways including metabolic stability, immune signaling, oxidative and mitochondrial stress possibly through pathways implicating PPARγ. Overall, this study shows that the therapeutic potential of GBA signaling is best harnessed in a synbiotic that simultaneously targets multiple risk factors of AD.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读