例如:"lncRNA", "apoptosis", "WRKY"

MicroRNA-448 inhibits the regeneration of spinal cord injury through PI3K/AKT/Bcl-2 axis.

Eur Rev Med Pharmacol Sci. 2019 Apr;23(7):2719-2726. doi:10.26355/eurrev_201904_17543
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVE:This study aims to elucidate the potential role of microRNA-448 in the recovery of spinal cord injury (SCI), and to explore the underlying mechanism. MATERIALS AND METHODS:MicroRNA-448 expression was determined by microarray and the established SCI model in mice. The target gene of microRNA-448 was predicted using bioinformatics. The functional binding of the target gene to microRNA-448 was verified by Dual-Luciferase reporter gene assay. The regulatory effects of microRNA-448 and Bcl-2 on apoptosis, motor neuron number and grip strength were evaluated. After injection of microRNA-448 mimics, microRNA-448 inhibitor or Bcl-2 siRNA in mice, expression levels of PI3K/AKT and Caspase3 were detected by quantitative Real (qRT-PCR) and Western blot. RESULTS:Grip strength of SCI mice significantly decreased compared with mice in the sham group. The microRNA-448 expression gradually increased with the progression of SCI, whereas the Bcl-2 expression decreased. Dual-Luciferase reporter gene assay showed the binding condition between microRNA-448 and Bcl-2. Furthermore, the Bcl-2 expression was negatively regulated by microRNA-448 at both mRNA and protein levels. The injection of microRNA-448 inhibitor into the injured spinal cord of SCI mice significantly upregulated the expressions of p-PI3K, p-AKT and Caspase3, as well as motor neuron regeneration and grip strength. However, the promotive effects of microRNA-448 inhibitor were blocked by Bcl-2 siRNA transfection. CONCLUSIONS:MicroRNA-448 is upregulated after SCI, which may be involved in the regenerative process of spinal motor nerves by regulating PI3K/AKT/Bcl-2 axis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读