例如:"lncRNA", "apoptosis", "WRKY"

The hydrophobic C-terminal sequence of transthyretin affects its catalytic kinetics towards amidated neuropeptide Y.

FEBS Open Bio. 2019 Mar 04;9(4):594-604. eCollection 2019 Apr
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Transthyretin (TTR) is a transporter for thyroid hormone and retinol binding protein that has recently been reported to have proteolytic activity against certain substrates, including amidated neuropeptide Y (NPY). However, the proteolytic activity of TTR towards NPY is not fully understood. Here, we used fluorescence-based assays to determine the catalytic kinetics of human TTR towards human amidated NPY. The Michaelis constant (KM) and catalytic efficiency (kcat/KM) of TTR proteolysis were 15.88 ± 0.44 μm and 687 081 ± 35 692 m -1·s-1, respectively. In addition, we demonstrated an effect of the C-terminal sequence of TTR. When the C-terminal sequence of TTR was made more hydrophobic, the KM and kcat/KM changed to 12.87 ± 0.22 μm and 983 755 ± 18 704 m -1·s-1, respectively. Our results may be useful for the development of TTR as a therapeutic agent with low risk of the undesirable symptoms that develop from amidated NPY, and for further improvement of the kcat/KM of TTR.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读