例如:"lncRNA", "apoptosis", "WRKY"

PTPN2 improved renal injury and fibrosis by suppressing STAT-induced inflammation in early diabetic nephropathy.

J Cell Mol Med. 2019 Jun;23(6):4179-4195. doi:10.1111/jcmm.14304. Epub 2019 Apr 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Diabetic nephropathy (DN) is a chronic inflammatory disease triggered by disordered metabolism. Recent studies suggested that protein tyrosine phosphatase non-receptor type 2 (PTPN2) could ameliorate metabolic disorders and suppress inflammatory responses. This study investigated PTPN2's role in modulating DN and the possible cellular mechanisms involved. In a mouse model combining hyperglycaemia and hypercholesterolaemia (streptozotocin diabetic, ApoE-/- mice), mice showed severe insulin resistance, renal dysfunction, micro-inflammation, subsequent extracellular matrix expansion and decreased expression of PTPN2. We found that mice treated with PTPN2 displayed reduced serum creatinine, serum BUN and proteinuria. PTPN2 gene therapy markedly attenuated metabolic disorders and hyperglycaemia. In addition, PTPN2 gene transfer significantly suppressed renal activation of signal transducers and activators of transcription pro-inflammatory and pro-fibrotic genes expression, and influx of lymphocytes in DN, indicating anti-inflammatory effects of PTPN2 by inhibiting the activation of signalling pathway in vivo. Furthermore, PTPN2 overexpression inhibited the high-glucose induced phosphorylation of target genes expression and proliferation in mouse mesangial and tubuloepithelial cells, suggesting that the roles of PTPN2 on duanyu1813 activation was independent of glycaemic changes. Our results demonstrated that PTPN2 gene therapy could exert protective effects on DN via ameliorating metabolic disorders and inhibiting renal duanyu1813-dependent micro-inflammation, suggesting its potential role for treatment of human DN.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读