例如:"lncRNA", "apoptosis", "WRKY"

Axin-1 binds to Caveolin-1 to regulate the LPS-induced inflammatory response in AT-I cells.

Biochem. Biophys. Res. Commun.2019 May 21;513(1):261-268. Epub 2019 Apr 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Caveolin-1 has been reported to play an important role in the pathogenesis of acute respiratory distress syndrome (ARDS). This study was designed to identify Caveolin-1-interacting proteins to reveal the molecular mechanisms of ARDS. Yeast two-hybrid screening was performed using Caveolin-1 as the bait, and Axin-1 was identified as a binding partner for Caveolin-1. Co-immunoprecipitation demonstrated that the binding domains were located in the N-terminal region (1-100 aa) of Caveolin-1 and the C-terminal region (710-797 aa) of Axin-1. Caveolin-1 gene knockout or Axin-1 knockdown significantly decreased the levels of TNF-α and IL-6 in the supernatants of alveolar type I (AT-I) epithelial cells treated with LPS. Disrupting the interaction between Caveolin-1 and Axin-1 using CRISPR/Cas9 technology led to a significant increase in TNF-α and IL-6 from AT-I cells, along with a significant reduction in β-catenin expression. In conclusion, Axin-1 functions as an adaptor of Caveolin-1 and affects the production of inflammatory cytokines in AT-I cells challenged with LPS via β-catenin-mediated negative regulation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读