[No authors listed]
Since 1967, it is known that the loss of GLI3 causes very severe defects in murine eye development. GLI3 is able to act as a transcriptional activator (GLI3-A) or as a transcriptional repressor (GLI3-R). Soon after the discovery of these GLI3 isoforms, the question arose which of the different isoforms is involved in eye formation - GLI3-A, GLI3-R or even both. For several years, this question remained elusive. By analysing the eye morphogenesis of Gli3XtJ/XtJ mouse embryos that lack GLI3-A and GLI3-R and of Gli3Î699/Î699 mouse embryos in which only GLI3-A is missing, we revealed that GLI3-A is dispensable in vertebrate eye formation. Remarkably, our study shows that GLI3-R is sufficient for the creation of morphologically normal eyes although the molecular setup deviates substantially from normality. In depth-investigations elucidated that GLI3-R controls numerous key players in eye development and governs lens and retina development at least partially via regulating WNT/β-CATENIN signalling.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |