例如:"lncRNA", "apoptosis", "WRKY"

Rhinovirus-induces progression of lung disease in a mouse model of COPD via IL-33/ST2 signaling axis.

Clin Sci (Lond). 2019 Apr 29;133(8):983-996
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Rhinovirus (RV), which is associated with acute exacerbations, also causes persistent lung inflammation in patients with chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are not well-known. Recently, we demonstrated that RV causes persistent lung inflammation with accumulation of a subset of macrophages (CD11b+/CD11c+), and CD8+ T cells, and progression of emphysema. In the present study, we examined the mechanisms underlying the RV-induced persistent inflammation and progression of emphysema in mice with COPD phenotype. Our results demonstrate that at 14 days post-RV infection, in addition to sustained increase in CCL3, CXCL-10 and IFN-γ expression as previously observed, levels of interleukin-33 (IL-33), a ligand for ST2 receptor, and matrix metalloproteinase (MMP)12 are also elevated in mice with COPD phenotype, but not in normal mice. Further, MMP12 was primarily expressed in CD11b+/CD11c+ macrophages. Neutralization of ST2, reduced the expression of CXCL-10 and IFN-γ and attenuated accumulation of CD11b+/CD11c+ macrophages, neutrophils and CD8+ T cells in COPD mice. Neutralization of IFN-γ, or ST2 attenuated MMP12 expression and prevented progression of emphysema in these mice. Taken together, our results indicate that RV may stimulate expression of CXCL-10 and IFN-γ via activation of ST2/IL-33 signaling axis, which in turn promote accumulation of CD11b+/CD11c+ macrophages and CD8+ T cells. Furthermore, RV-induced IFN-γ stimulates MMP12 expression particularly in CD11b+/CD11c+ macrophages, which may degrade alveolar walls thus leading to progression of emphysema in these mice. In conclusion, our data suggest an important role for ST2/IL-33 signaling axis in RV-induced pathological changes in COPD mice. © 2019 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读