例如:"lncRNA", "apoptosis", "WRKY"

Anti-CTLA-4 synergizes with dendritic cell-targeted vaccine to promote IL-3-dependent CD4+ effector T cell infiltration into murine pancreatic tumors.

Ann N Y Acad Sci. 2019 Jun;1445(1):62-73. doi:10.1111/nyas.14049. Epub 2019 Apr 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


One successful class of cancer immunotherapies, immune checkpoint inhibitory antibodies, disrupts key pathways that regulate immune checkpoints, such as cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). These agents unleash the potency of antigen-experienced T cells that have already been induced as a consequence of the existing tumor. But only 20% of cancers naturally induce T cells. For most cancers, vaccines are require to induce and mobilize T effector cells (Teffs ) to traffick into tumors. We evaluated the effects of anti-CTLA-4 given in combination with an antigen-specific dendritic cell vaccine on intratumoral Teffs in a murine pancreatic cancer model. The dendritic cell-targeted tumor antigen plus anti-CTLA-4 significantly increased the number of vaccine-induced CD4+ Teffs within the tumor. This increase was accompanied by a reduction in the size of the peripheral CD4+ Teff pool. We also found that IL-3 production by activated CD4+ T cells was significantly increased with this combination. Importantly, the CD4+ Teff response was attenuated in Il3-/- mice, suggesting mediation of the effect by IL-3. Finally, the induced T cell infiltration was associated with activation of the tumor endothelium by T cell-derived IL-3. Our findings collectively provide a new insight into the mechanism driving Teff infiltration and vascular activation in a murine pancreatic cancer model, specifically identifying a new role for IL-3 in the anticancer immune response. © 2019 New York Academy of Sciences.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读