例如:"lncRNA", "apoptosis", "WRKY"

GRSF1 is an age-related regulator of senescence.

Sci Rep. 2019 Apr 03;9(1):5546
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Senescent cells that accumulate in multiple tissues with age are thought to increase pathological phenotypes. The removal of senescent cells can improve lifespan and/or healthspan in mouse models. Global hypomethylation and local hypermethylation in DNA are hallmarks of aging but it is unclear if such age-dependent methylation changes affect specific genes that regulate cellular senescence. Because mitochondria play important roles in aging and senescence, we tested if age-associated methylation changes in nuclear-encoded mitochondrial proteins were involved in regulating cellular senescence. Here, we examined the role of hypermethylation of the G-rich sequence factor 1 (GRSF1) promoter region, a mitochondrial RNA binding protein, in replication- and doxorubicin-induced cellular senescence. GRSF1 expression was lower in senescent fibroblasts, and GRSF1 knockdown induced senescence in human primary fibroblasts. These results suggest that the age-dependent hypermethylation of GRSF1 reduces its expression, which can potentially contribute to cellular senescence during aging.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读