例如:"lncRNA", "apoptosis", "WRKY"

Diabetes-Associated Myelopoiesis Drives Stem Cell Mobilopathy Through an OSM-p66Shc Signaling Pathway.

Diabetes. 2019 Jun;68(6):1303-1314. Epub 2019 Apr 01
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Diabetes impairs the mobilization of hematopoietic stem/progenitor cells (HSPCs) from the bone marrow (BM), which can worsen the outcomes of HSPC transplantation and of diabetic complications. In this study, we examined the oncostatin M (OSM)-p66Shc pathway as a mechanistic link between HSPC mobilopathy and excessive myelopoiesis. We found that streptozotocin-induced diabetes in mice skewed hematopoiesis toward the myeloid lineage via hematopoietic-intrinsic p66Shc. The overexpression of Osm resulting from myelopoiesis prevented HSPC mobilization after granulocyte colony-stimulating factor (G-CSF) stimulation. The intimate link between myelopoiesis and impaired HSPC mobilization after G-CSF stimulation was confirmed in human diabetes. Using cross-transplantation experiments, we found that deletion of p66Shc in the hematopoietic or nonhematopoietic system partially rescued defective HSPC mobilization in diabetes. Additionally, p66Shc mediated the diabetes-induced BM microvasculature remodeling. Ubiquitous or hematopoietic restricted Osm deletion phenocopied p66Shc deletion in preventing diabetes-associated myelopoiesis and mobilopathy. Mechanistically, we discovered that OSM couples myelopoiesis to mobilopathy by inducing Cxcl12 in BM stromal cells via nonmitochondrial p66Shc. Altogether, these data indicate that cell-autonomous activation of the OSM-p66Shc pathway leads to diabetes-associated myelopoiesis, whereas its transcellular hematostromal activation links myelopoiesis to mobilopathy. Targeting the OSM-p66Shc pathway is a novel strategy to disconnect mobilopathy from myelopoiesis and restore normal HSPC mobilization.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读