例如:"lncRNA", "apoptosis", "WRKY"

Recombinant porcine myostatin propeptide generated by the Pichia pastoris elevates myoblast growth and ameliorates high-fat diet-induced glucose intolerance.

Res. Vet. Sci.2019 Jun;124:200-211. Epub 2019 Mar 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Myostatin (MSTN) was identified as a negative regulator of skeletal muscle growth. MSTN inhibition by myostatin propeptide (MSPP) increased skeletal muscle mass, myofiber growth and muscle force. Thus, this study was designed to produce wild-type porcine MSPP (WT-MSPP) and its mutated form (D75A-MSPP) in yeast Pichia pastoris and to investigate its potential enhancement of myoblast growth and differentiation. In an in vitro study, C2C12 myoblasts were treated with the purified WT-MSPP or D75A-MSPP (10 μg/mL) in either a regular culture medium or in a differentiation medium for 72 h. In an animal trial, post-weaning C57BL/6 mice fed with a high-fat diet (HFD) were administered WT-MSPP or D75A-MSPP for 6 weeks. The results showed that C2C12 myoblasts treated with the purified WT-MSPP or D75A-MSPP could dramatically promote cell proliferation. Both myoD and myogenin were significantly increased (p < .05) after WT-MSPP or D75A-MSPP treatment. D75A-MSPP was particularly more effective than WT-MSPP in promoting myotube formation (p < .05). The post-weaning mice treated with D75A-MSPP significantly increased both body and muscle weights compared with the mock and WT-MSPP groups (p < .05). Furthermore, the mice treatment with D75A-MSPP could prevent increased glucose injection from inducing glucose elevation. Our data indicated that a mutant-type MSPP (D75A-MSPP) was superior to WT-MSPP in effectively enhancing myofiber growth due to the highly resistant to proteolytic cleavage by the bone morphogenetic protein-1/tolloid (BMP-1/TLD) and thus has potential applications for clinical muscle wasting diseases or for increasing muscle mass in meat-producing animals.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读