例如:"lncRNA", "apoptosis", "WRKY"

lncRNA B4GALT1-AS1 promotes colon cancer cell stemness and migration by recruiting YAP to the nucleus and enhancing YAP transcriptional activity.

J Cell Physiol. 2019 Aug;234(10):18524-18534. doi:10.1002/jcp.28489. Epub 2019 Mar 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Here, an RNA-sequencing assay revealed long noncoding RNAs (lncRNAs) with an ectopic expression between colon cancer (CC) and normal colon epithelial cells, in which lncRNA B4GALT1-AS1 exhibited the highest change. A 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay indicated that B4GALT1-AS1 knockdown had no effect on CC cell viability, however, cell clone formation analysis showed that B4GALT1-AS1 knockdown attenuated the capacity of cell clone formation. Additionally, gene set enrichment analysis of this data set revealed that positive enrichment of stem cell-differentiated signatures and negative embryonic stem cell function and adult tissue stem module were observed in CC cells with B4GALT1-AS1 knockdown. Furthermore, B4GALT1-AS1 knockdown suppressed the stemness-marker expression, the ability of cell spheroid formation, and ALDH1 activity in CC cells. Mechanistically, RNA-sequencing data found that the Hippo pathway in cancer was shown on pathways mostly upregulated by B4GALT1-AS1 knockdown, and B4GALT1-AS1 directly bound to the yes-associated protein (YAP), a downstream executor of the Hippo pathway, and B4GALT1-AS1 knockdown promoted the nuclear cytoplasm translocation of YAP and decreased YAP transcriptional activity. Notably, YAP overexpression attenuated the inhibitory effects mediated by B4GALT1-AS1 knockdown. Our results identify the direct binding of lncRNA B4GALT1-AS1 to YAP, which is responsible for CC cell stemness.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读