例如:"lncRNA", "apoptosis", "WRKY"

Intestinal vitamin D receptor modulates lipid metabolism, adipose tissue inflammation and liver steatosis in obese mice.

Biochim Biophys Acta Mol Basis Dis. 2019 Jun 01;1865(6):1567-1578. Epub 2019 Mar 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVE:Hypovitaminosis D is common in the obese population and patients suffering from obesity-associated disorders such as type 2 diabetes and fatty liver disease, resulting in suggestions for vitamin D supplementation as a potential therapeutic option. However, the pathomechanistic contribution of the vitamin D-vitamin D receptor (VDR) axis to metabolic disorders is largely unknown. METHODS:We analyzed the pathophysiological role of global and intestinal VDR signaling in diet-induced obesity (DIO) using global Vdr-/- mice and mice re-expressing an intestine-specific human VDR transgene in the Vdr deficient background (Vdr-/- hTg). RESULTS:Vdr-/- mice were protected from DIO, hepatosteatosis and metabolic inflammation in adipose tissue and liver. Furthermore, Vdr-/- mice displayed a decreased adipose tissue lipoprotein lipase (LPL) activity and a reduced capacity to harvest triglycerides from the circulation. Intriguingly, all these phenotypes were partially reversed in Vdr-/- hTg animals. This clearly suggested an intestine-based VDR activity on systemic lipid homeostasis. Scrutinizing this hypothesis, we identified the potent LPL inhibitor angiopoietin-like 4 (Angptl4) as a novel transcriptional target of VDR. CONCLUSION:Our study suggests a VDR-mediated metabolic cross-talk between gut and adipose tissue, which significantly contributes to systemic lipid homeostasis. These results have important implications for use of the intestinal VDR as a therapeutic target for obesity and associated disorders.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读