例如:"lncRNA", "apoptosis", "WRKY"

Human GPRC6A Mediates Testosterone-Induced Mitogen-Activated Protein Kinases and mTORC1 Signaling in Prostate Cancer Cells.

Mol. Pharmacol.2019 May;95(5):563-572. Epub 2019 Mar 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


G protein-coupled receptor family C group 6 member A (GPRC6A) is activated by testosterone and modulates prostate cancer progression. Most humans have a GPRC6A variant that contains a recently evolved KGKY insertion/deletion in the third intracellular loop (ICL3) (designated as GPRC6AICL3_KGKY) that replaces the ancestral KGRKLP sequence (GPRC6AICL3_RKLP) present in all other species. In vitro assays purport that human GPRC6AICL3_KGKY is retained intracellularly and lacks function. These findings contrast with ligand-dependent activation and coupling to mammalian target of rapamycin complex 1 (mTORC1) signaling of endogenous human GPRC6AICL3_KGKY in PC-3 cells. To understand these discrepant results, we expressed mouse (mGPRC6AICL3_KGRKLP), human (hGPRC6AICL3_KGKY), and humanized mouse (mGPRC6AICL3_KGKY) GPRC6A into human embryonic kidney 293 cells. Our results demonstrate that mGPRC6AICL3_KGRKLP acts as a classic G protein-coupled receptor, which is expressed at the cell membrane and internalizes in response to ligand activation by testosterone. In contrast, hGPRC6AICL3_KGKY and humanized mouse mGPRC6AICL3_KGKY are retained intracellularly in ligand naive cells, yet exhibit β-arrestin-dependent signaling responses, mitogen-activated protein kinase [i.e., extracellular signal-regulated kinase (ERK)], and p70S6 kinase phosphorylation in response to testosterone, indicating that hGPRC6AICL3_KGKY is functional. Indeed, testosterone stimulates time- and dose-dependent activation of ERK, protein kinase B, and mTORC1 signaling in wild-type PC-3 cells that express endogenous GPRC6AICL3_KGKY In addition, testosterone stimulates GPRC6A-dependent cell proliferation in wild-type PC-3 cells and inhibits autophagy by activating mTORC1 effectors eukaryotic translation initiation factor 4E binding protein 1 and Unc-51 like autophagy activating kinase 1. Testosterone activation of GPRC6A has the obligate requirement for calcium in the incubation media. In contrast, in GPRC6A-deficient cells, the effect of testosterone to activate downstream signaling is abolished, indicating that human GPRC6A is required for mediating the effects of testosterone on cell proliferation and autophagy.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读