例如:"lncRNA", "apoptosis", "WRKY"

Met-enkephalin inhibits ROS production through Wnt/β-catenin signaling in the ZF4 cells of zebrafish.

Fish Shellfish Immunol.2019 May;88:432-440. Epub 2019 Mar 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Opioid neuropeptides are developed early in the course of a long evolutionary process. As the endogenous messengers of immune system, opioid neuropeptides participate in regulating immune response. In this study, the mechanism that Met-enkephalin (M-ENK) inhibits production through Wnt/β-catenin signaling was investigated in the ZF4 cells of zebrafish. ZF4 cells were exposed to 0, 10, 20, 40, 80, and 160 μM Met-enkephalin (M-ENK) for 24 h, and the cell viability was detected with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. The cell viability was significantly increased by 10, 20, 40, 80, and 160 μM M-ENK. After ZF4 cells were exposed to 0, 20, 40, and 80 μM M-ENK for 24 h, the mRNA expression of Wnt10b, β-catenin, and CCAAT/enhancer binding protein α (C/EBPα) was significantly increased by 40 and 80 μM M-ENK. However, the mRNA and protein expression of GSK-3β was significantly decreased by 40 and 80 μM M-ENK. The protein expression of β-catenin was significantly induced by 40 and 80 μM M-ENK, while the protein expression of p-β-catenin was significantly decreased by 20, 40, and 80 μM M-ENK. In addition, the mRNA expression of CAT, SOD, and GSH-PX was significantly increased by 40 and 80 μM M-ENK. The levels of H2O2, ·OH, and O2·- were significantly decreased, but the activity of CAT, SOD, and GSH-PX was significantly increased by 40 and 80 μM M-ENK. The fluorescence intensity of reactive oxygen species was decreased, and that of mitochondrial membrane potential (MMP) was increased with the increase of M-ENK concentration in ZF4 cells. The results showed that M-ENK could induce Wnt/β-catenin signaling, which further inhibited duanyu1670 production through the induction of C/EBPα, MMP, and the activities of antioxidant enzymes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读