例如:"lncRNA", "apoptosis", "WRKY"

Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation.

Mol. Cell. Endocrinol.2019 Apr 15;486:96-104. Epub 2019 Mar 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Severe inflammation in the islets is observed in obese patients with type 2 diabetes. Inflammation in the islets is caused by obesity-induced serum free fatty acids. Asprosin is a fasting-induced adipokine, which contributes to hepatic glucose production. However, the effects of asprosin on inflammation and cellular dysfunction in pancreatic β-cells remain to be elucidated. Here, we demonstrated that treatment of mouse insulinoma MIN6 cells and human primary islets containing β-cells with palmitate increased asprosin expression and secretion. Treatment of MIN6 cells and human primary islets with palmitate increased phosphorylation of the inflammatory marker nuclear factor-kappa B (NFκB) and the release of pro-inflammatory cytokines including TNF and MCP-1 and decreased glucose-stimulated insulin secretion and cell viability. However, siRNA-mediated suppression of asprosin reversed these changes. Recombinant asprosin treatment of MIN6 cells and human primary islets augmented the inflammation response, cellular dysfunction, and apoptosis in a dose-dependent manner. Asprosin induced toll-like receptor (TLR) 4 expression and JNK phosphorylation. siRNA for TLR4 or JNK mitigated the effects of asprosin on inflammation and cellular dysfunction. These results suggest that palmitate-derived asprosin secretion from β-cells results in their inflammation and dysfunction through a TLR4/JNK-mediated pathway. This report suggests asprosin as a novel therapeutic target for the treatment of type 2 diabetes through preservation of β-cell function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读