例如:"lncRNA", "apoptosis", "WRKY"

The BLOC-3 subunit HPS4 is required for activation of Rab32/38 GTPases in melanogenesis, but its Rab9 activity is dispensable for melanogenesis.

J Biol Chem. 2019 Apr 26;294(17):6912-6922. Epub 2019 Mar 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


HPS4 biogenesis of lysosome-related organelles complex 3 subunit 2 (HPS4) is one of the genes whose mutations have been associated with Hermansky-Pudlak syndrome (HPS), characterized by ocular albinism and susceptibility to bleeding because of defects in the biogenesis of lysosome-related organelles such as melanosomes. HPS4 protein forms a BLOC-3 complex with HPS1, another HPS gene product, and the complex has been proposed to function as a guanine nucleotide exchange factor (GEF) for RAB32, a member of the Rab small GTPase family (Rab32), and Rab38 (Rab32/38-GEF) and also as a Rab9 effector. Although both Rab32/38 and Rab9 have been shown previously to be involved in melanogenesis in mammalian epidermal melanocytes, the functional relationships of these small GTPases with BLOC-3 remain unknown. In this study, we used site-directed mutagenesis to generate HPS4 mutants that specifically lack either Rab32/38-GEF activity or Rab9-binding activity and investigated their involvement in melanogenesis of melan-le cells (an HPS4-deficient melanocyte cell line derived from light ear mice). Melan-le cells exhibit a clear hypopigmentation phenotype, i.e. reduced expression and abnormal distribution of tyrosinase and reduced melanin content. Although re-expression of WT HPS4 completely rescued this phenotype, the Rab32/38-GEF activity-deficient HPS4 mutant failed to restore melanin content and tyrosinase trafficking in these cells. Unexpectedly, as WT HPS4, the Rab9 binding-deficient HPS4 mutant completely rescued the phenotype. These results indicate that activation of Rab32/38 by HPS4 (or BLOC-3) is essential for melanogenesis of cultured melanocytes and that Rab9 likely regulates melanogenesis independently of HPS4.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读