例如:"lncRNA", "apoptosis", "WRKY"

Gene expression patterns and related enzymatic activities of detoxification and oxidative stress systems in zebrafish larvae exposed to the 2,4-dichlorophenoxyacetic acid herbicide.

Chemosphere. 2019 Jun;224:289-297. Epub 2019 Feb 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The present study aims to assess the effects of 2,4-D herbicide on biotransformation and oxidative stress status of zebrafish larvae. Animals were exposed to a range of sublethal concentrations (0.02-0.8 mg/L) and biomarkers at transcriptomic level and biochemical level were assessed. Chemical analysis with showed that the bioaccumulation of 2,4-D in 96 hpf zebrafish larvae were increased in a concentration-dependent manner. This herbicide induced significant effects at both gene expression and enzymatic activities levels after at 96 hpf. Results of mRNA expression showed a differential transcription regulation with all target genes depending on the tested concentrations. The mRNA level of gsr and cyp1a were up regulated at the highest dose of herbicide (0.8 mg/L). The gene expression of gstp1 showed an up regulation at lower dose (0.02 mg/L) and a down regulation at the highest dose (0.8 mg/L) of 2,4-D. A significant induction of EROD activity and inhibition of GST activity were noted in groups exposed to 0.8 mg/L of 2,4-D. Considering the antioxidant defenses, the activity of CAT was increased in larvae exposed to 0.8 mg/L of herbicide and GPx activity was induced at lower doses of 2,4-D (0.02 and 0.051 mg/L). Moreover, peroxidative damage, assessed as MDA content, was markedly increased in larvae exposed to high 2,4-D concentration. Overall, the present study data indicate that bioaccumulation of 2,4-D in 96 hpf zebrafish larvae and alterations in detoxification and oxidative stress related parameters, likely associated with production, which may endanger the embryo-larval stages development of fish.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读