例如:"lncRNA", "apoptosis", "WRKY"

A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells.

Sci Adv. 2019 Feb 27;5(2):eaav4416. eCollection 2019 Feb
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The quiescence of radial neural stem cells (rNSCs) in adult brain is regulated by environmental stimuli. However, little is known about how the neurogenic niche couples the external signal to regulate activation and transition of quiescent rNSCs. Here, we reveal that long-term excitation of hippocampal dentate granule cells (GCs) upon voluntary running leads to activation of adult rNSCs in the subgranular zone and thereby generation of newborn neurons. Unexpectedly, the role of these excited GC neurons in NSCs depends on direct GC-rNSC interaction in the local niche, which is through down-regulated ephrin-B3, a GC membrane-bound ligand, and attenuated transcellular EphB2 kinase-dependent signaling in the adjacent rNSCs. Furthermore, constitutively active EphB2 kinase sustains the quiescence of rNSCs during running. These findings thus elucidate the physiological significance of GC excitability on adult rNSCs under external environments and indicate a key-lock switch regulation via cell-cell contact for functional transition of rNSCs.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读