[No authors listed]
Mediator of IRF3 activation ([MITA] also known as STING) is a direct sensor of cyclic dinucleotide and critically mediates cytoplasmic DNA--triggered innate immune signaling. The activity of MITA is extensively regulated by ubiquitination and deubiquitination. In this study, we report that USP20 interacts with and removes K48-linked ubiquitin chains from MITA after HSV-1 infection, thereby stabilizing MITA and promoting cellular antiviral responses. Deletion of USP20 accelerates HSV-1-induced degradation of MITA and impairs phosphorylation of IRF3 and IκBα as well as subsequent induction of type I IFNs and proinflammatory cytokines after HSV-1 infection or cytoplasmic DNA challenge. Consistently, Usp20-/- mice produce decreased type I IFNs and proinflammatory cytokines, exhibit increased susceptibility to lethal HSV-1 infection, and aggravated HSV-1 replication compared with Usp20+/+ mice. In addition, complement of MITA into Usp20-/- cells fully restores HSV-1-triggered signaling and inhibits HSV-1 infection. These findings suggest a crucial role of USP20 in maintaining the stability of MITA and promoting innate antiviral signaling.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |