[No authors listed]
The ε subunit of Fo F1 -ATPase/synthase (Fo F1 ) plays a crucial role in regulating Fo F1 activity. To understand the physiological significance of the ε subunit-mediated regulation of Fo F1 in Bacillus subtilis, we constructed and characterized a mutant harboring a deletion in the C-terminal regulatory domain of the ε subunit (εâC ). Analyses using inverted membrane vesicles revealed that the εâC mutation decreased ATPase activity and the ATP-dependent H+ -pumping activity of Fo F1 . To enhance the effects of εâC mutation, this mutation was introduced into a ârrn8 strain harboring only two of the 10 rrn (rRNA) operons (ârrn8 εâC mutant strain). Interestingly, growth of the ârrn8 εâC mutant stalled at late-exponential phase. During the stalled growth phase, the membrane potential of the ârrn8 εâC mutant cells was significantly reduced, which led to a decrease in the cellular level of 70S ribosomes. The growth stalling was suppressed by adding glucose into the culture medium. Our findings suggest that the C-terminal region of the ε subunit is important for alleviating the temporal reduction in the membrane potential, by enhancing the ATP-dependent H+ -pumping activity of Fo F1 .
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |