例如:"lncRNA", "apoptosis", "WRKY"

Overexpressed N-fucosylation on the cell surface driven by FUT3, 5, and 6 promotes cell motilities in metastatic pancreatic cancer cell lines.

Biochem Biophys Res Commun. 2019 Apr 02;511(2):482-489. Epub 2019 Feb 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Pancreatic cancer is a highly malignant tumor of the digestive system. Previous studies have shown that abnormal cell surface glycosylation is associated with cancer metastasis, which suggests that glycosylation changes may open a new window for discovering metastasis-related pathways. In this study, we used a microarray with 55 lectins to screen for altered glycosylation between two metastatic pancreatic cancer lines (Capan-1 and Su.86.86) and two nonmetastatic pancreatic cancer lines (Panc-1 and MIA PaCa-2), and we further analyzed three lectins with high-binding activities (AAL, UEA-I, and PHA-E) in cell motility assays using these pancreatic cancer cells to detect whether blocking certain forms of cell surface glycosylation affects any processes associated with metastasis. As a result, we found that AAL, a fucose-specific lectin, has different binding patterns between metastatic pancreatic cancer and nonmetastatic pancreatic cancer lines and inhibits cell motility in metastatic pancreatic cancer cells. Furthermore, the N-fucosylation-related genes FUT3, 5, and 6 were found to be responsible for the elevated fucosylation in metastatic pancreatic cells through real-time PCR screening. In summary, our findings that the specific bindings of AAL on cell surfaces and highly expressed FUT3, 5, and 6 in metastatic pancreatic cancer cells, although preliminary, are encouraging, and our established combined method is also suitable for discovering metastasis-related mechanisms in other cancers.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读