例如:"lncRNA", "apoptosis", "WRKY"

Structural mechanism for versatile cargo recognition by the yeast class V myosin Myo2.

J Biol Chem. 2019 Apr 12;294(15):5896-5906. Epub 2019 Feb 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Class V myosins are actin-dependent motors, which recognize numerous cellular cargos mainly via the C-terminal globular tail domain (GTD). Myo2, a yeast class V myosin, can transport a broad range of organelles. However, little is known about the capacity of Myo2-GTD to recognize such a diverse array of cargos specifically at the molecular level. Here, we solved crystal structures of Myo2-GTD (at 1.9-3.1 Å resolutions) in complex with three cargo adaptor proteins: Smy1 (for polarization of secretory vesicles), Inp2 (for peroxisome transport), and Mmr1 (for mitochondria transport). The structures of Smy1- and Inp2-bound Myo2-GTD, along with site-directed mutagenesis experiments, revealed a binding site in subdomain-I having a hydrophobic groove with high flexibility enabling Myo2-GTD to accommodate different protein sequences. The Myo2-GTD-Mmr1 complex structure confirmed and complemented a previously identified mitochondrion/vacuole-specific binding region. Moreover, differences between the conformations and locations of cargo-binding sites identified here for Myo2 and those reported for mammalian MyoVA (MyoVA) suggest that class V myosins potentially have co-evolved with their specific cargos. Our structural and biochemical analysis not only uncovers a molecular mechanism that explains the diverse cargo recognition by Myo2-GTD, but also provides structural information useful for future functional studies of class V myosins in cargo transport.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读