例如:"lncRNA", "apoptosis", "WRKY"

Isoliquiritigenin as an antioxidant phytochemical ameliorates the developmental anomalies of zebrafish induced by 2,2',4,4'-tetrabromodiphenyl ether.

Sci. Total Environ.2019 May 20;666:390-398. Epub 2019 Feb 18
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


2,2',4,4'-Tetrabromodiphenyl ether (BDE47) is the most abundant PBDE congeners in biological samples. It has strong tendencies to bioaccumulate and potentially endangers development of mammals through oxidative stress. Isoliquiritigenin (ISL), an emerging natural chalcone-type flavonoid, possesses various biological and pharmacological properties, including antioxidant, anti-allergic, anti-inflammatory, anti-tumor and estrogenic activities. The purpose of the study is to explore the antioxidant effect of ISL on the amelioration of developmental anomalies induced by BDE47. Zebrafish (Danio rerio) embryos were exposed to BDE47 (1 and 10 μM) and/or ISL (4 μM) for 4 to 120 hours post fertilization (hpf), and the morphology, development, behavior, oxidative stress status and related genes expression were assessed. The results showed that BDE47 contributed to dose-dependent growth retardation and deformities, including delayed hatching, spinal curvature, reduced body length, increased death rate, aberrant behaviors and impaired dark-adapted vision, which were significantly mitigated by ISL. Besides, ISL ameliorated excessive accumulation, and exaggerated the expressions of apoptosis-related genes p53, Bcl-2, caspase 3 and caspase 9 induced by BDE47, suggesting that ISL protected zebrafish from the developmental toxicity of BDE47 by inactivation of programmed apoptosis and activation of antioxidant signaling pathways. Taken together, developing ISL as a dietary supplement might be a promising preventive strategy for the amelioration of developmental toxicity induced by environmental pollutants.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读